1. Identify three objects that might belong to each of the following classes?
 a. automobile
 b. NovelAuthor
 c. CollegeCourse
SOLUTION:
 a. Mclaren F1
 b. Jeffrey Archer
 c. Linear Algebra

2. Design a class named customerRecord that holds a customer number name and address include methods to see the values for each data field and print the values for each data field create the class diagram and write the pseudocode that defines the class.

SOLUTION:

```cpp
#include <string>
#include <iostream>
using namespace std;

class customerRecord
{
    private:
        string customerName; // Holds customer name
        string customerNumber; // Holds alphanumeric customer number
        string customerAddress; // Holds customer Address

    public:
        // Method to get customer name
        string GetName() {
            return customerName;
        }
        // Method to get customer number
        string GetNumber() {
            return customerNumber;
        }
        // Method to get customer Address
        string GetAddress() {
            return customerAddress;
        }

        void SetName(string Name) {
            customerName = Name;
        }

        void SetNumber(string Number)
```
struct CustomerRecord {
 int customerNumber;
 string customerAddress;
 string customerName;
};

void SetAddress(string Address) {
 customerAddress = Address;
}

// Method to print customer name
void PrintName() {
 cout << "Customer Name: " << customerName << endl;
}

// Method to print customer number
void PrintNumber() {
 cout << "Customer Number: " << customerNumber << endl;
}

// Method to print customer Address
void PrintAddress() {
 cout << "Customer Address: " << customerAddress << endl;
}

// CLASS DIAGRAM:

CLASS DIAGRAM:

```
struct CustomerRecord {
    int customerNumber;
    string customerAddress;
    string customerName;
};

void SetAddress(string Address) {
    customerAddress = Address;
}

// Method to print customer name
void PrintName() {
    cout << "Customer Name: " << customerName << endl;
}

// Method to print customer number
void PrintNumber() {
    cout << "Customer Number: " << customerNumber << endl;
}

// Method to print customer Address
void PrintAddress() {
    cout << "Customer Address: " << customerAddress << endl;
}
```

CLASS DIAGRAM:

```
struct CustomerRecord {
    int customerNumber;
    string customerAddress;
    string customerName;
};

void SetAddress(string Address) {
    customerAddress = Address;
}

// Method to print customer name
void PrintName() {
    cout << "Customer Name: " << customerName << endl;
}

// Method to print customer number
void PrintNumber() {
    cout << "Customer Number: " << customerNumber << endl;
}

// Method to print customer Address
void PrintAddress() {
    cout << "Customer Address: " << customerAddress << endl;
}
```
PSEUDOCODE:

Declare customerRecord
Initialize Customer Name
Initialize Customer Number
Initialize Customer Address
Print Customer Name
Print Customer Number
Print Customer Address

3. Design a class named loan that holds an account number name of account holder amount borrowed term and interest rate include methods to see values for each data field and a method that prints all the loan information create the class diagram and write the pseudo-code that defines the class.

SOLUTION:

```cpp
class Loan
{
    private:
        string accountNumber; // Account Number
        string accountTitle; // Name of the account holder
        double amountBorrowed; // Amount borrowed
        int term; // Term of loan
        float interestRate; // interest rate

    public:
        // Method to get Account Number
        string GetAcNumber() {
            return accountNumber;
        }
        // Method to get Account Title (Name of Account Holder
        string GetAcTitle() {
            return accountTitle;
        }
        double GetamBorrowed() {
            return amountBorrowed;
        }
        int GetTerm() {
            return term;
        }
        float GetInterestRate() {
            return interestRate;
        }

    void PrintLoanInfo() {
        cout << "Account Title: " << accountTitle << endl;
        cout << "Account Number: " << accountNumber << endl;
        cout << "Amount Borrowed: " << amountBorrowed << endl;
        cout << "Loan Term: " << term << endl;
    }
```
cout << "Interest Rate: " << interestRate << endl;

};//

CLASS DIAGRAM:

PSEUDOCODE:

Declare Loan
Initialize Account Holder Name
Initialize Account Number to
Initialize Amount Borrowed
Initialize interest Rate
Initialize term

Print User Loan Information

4. Design a class name circle with fields named radius area and diameter include a constructor that sets the radius to 1. include get methods for each field but include a set method only for the radius when the radius is set calculate the diameter (twice the radius) and the area(the radius squared time pi, which is approximately 3.14) create the class diagram and write the pseudocode that defines the class.

B) design an application program that declares two circles set the radius of one manually but allow the other to use the default value supplied by the constructor then display each circles values.

SOLUTION:

class Circle
{
private:
 double radius;
 double Area;
 double Diameter;

public:
Circle()
{
 radius = 1;
 Diameter = 2 * radius;
 Area = 3.1415926 * radius * radius;
}

// Get Radius
double GetRadius()
{
 return radius;
}

// Get Area
double GetArea()
{
 return Area;
}

// Get Diameter
double GetDiameter()
{
 return Diameter;
}

// Set Radius
void SetRadius(double Rad)
{
 radius = Rad;
 Diameter = 2 * radius;
 Area = 3.1415926 * radius * radius;
}

void PrintCircleData()
{
 cout << "Radius: " << radius << endl;
 cout << "Diameter: " << Diameter << endl;
 cout << "Area: " << Area << endl;
}

};

int main(void)
{
 Circle c1, c2;
 c1.PrintCircleData();
 c2.SetRadius(2.5);
 c2.PrintCircleData();

 getche();

 return 0;
}

Output:
CLASS DIAGRAM:

PSUEDOCODE:

Declare First Circle
Declare Second Circle
Print First Circle’s Radius
Print First Circle’s Diameter
Print First Circle’s Area
Initialize Second Circle’s Radius to 2.5
Print Second Circle’s Radius
Print Second Circle’s Diameter
Print Second Circle’s Area
5. Design a class named girlscout with fields that hold a name troop number and dues owed include get and set methods for each field include a static method that displays the girl scout motto (to obey the girl scout law) include three overloaded constructors as follows: a default constructor that sets the name to xxx and the numeric fields to 0 a constructor that allows you to pass values for all three fields a constructor that allows you to pass a name and troop number but sets dues owed to 0 Create the class diagram and write the pseudo-code that defines the class B) design an application program that declares three girlscout objects using a different constructor version with each object display each girlscout values then display motto.

```cpp
class GirlScout
{
private:
    string Name;
    string TroopNumber;
    double DuesOwed;

public:

    // Constructor 1
    GirlScout()
    {
        Name = "xxx";
        TroopNumber = "xxx";
        DuesOwed = 0;
    }

    // Constructor 2
    GirlScout(string name, string tnumber, double dues)
    {
        Name = name;
        TroopNumber = tnumber;
        DuesOwed = dues;
    }

    // Constructor 3
    GirlScout(string name, string tnumber)
    {
        Name = name;
        TroopNumber = tnumber;
        DuesOwed = 0;
    }

    string GetName()
    {
        return Name;
    }

    string GetNumber()
    {
        return TroopNumber;
    }

    double GetDuesOwed()
    {
        return DuesOwed;
    }

    static void DisplayMotto()
    {
        cout << "To obey the girl scout law" << endl;
    }
};
```
```cpp
void SetName(string name)
{
    Name = name;
}

void SetNumber(string number)
{
    TroopNumber = number;
}

void SetDuesOwed(double dues)
{
    DuesOwed = dues;
}

static void Motto()
{
    cout << "Motto: To obey the girl scout law" << endl;
}

void DisplayScoutData()
{
    cout << "Scout Name: " << Name << endl;
    cout << "Troop Number: " << TroopNumber << endl;
    cout << "Dues: " << DuesOwed << endl;
}

int main(void)
{
    GirlScout gs1;
    gs1.DisplayScoutData();
    GirlScout::Motto();
    GirlScout gs2("Maria","12754");
    gs2.DisplayScoutData();
    GirlScout::Motto();
    GirlScout gs3("Summers","36434",312);
    gs3.DisplayScoutData();
    GirlScout::Motto();

    getche();
    return 0;
}
```

Output:
CLASS DIAGRAM:

```
Scout Name: xxx
Troop Number: xxx
Dues: 0
Motto: To obey the girl scout law
Scout Name: Maria
Troop Number: 12754
Dues: 0
Motto: To obey the girl scout law
Scout Name: Summers
Troop Number: 36434
Dues: 312
Motto: To obey the girl scout law
```

PESEUDOCODE:
Declare first GirlScout
Print First GirlScout’s Name
Print First GirlScout’s Troop Number
Print First GirlScout’s Dues
Initialize second GirlScouts Name and Troop Number
Print Second GirlScout’s Name
Print Second GirlScout’s Troop Number
Print Second GirlScout’s Dues
Declare third GirlScout
Initialize third GirlScout’s Name, Troop Number, Dues Borrowed
Print third GirlScout’s Name
Print third GirlScout’s Troop Number
Print third GirlScout’s Dues