Chapter 8 Communications Systems

ARTICLE 800
Communications Circuits

FPN: Rules that are followed by a reference in brackets contain text that has been extracted from NFPA 90A–2002, Standard for the Installation of Air-Conditioning and Ventilating Systems. Only editorial changes were made to the extracted text to make it consistent with this Code.

I. General

800.1 Scope. This article covers communications circuits and equipment.

FPN No. 1: For installation requirements for information technology equipment and systems in an information technology equipment room, see Article 645.

FPN No. 2: For further information for remote-control, signaling, and power-limited circuits, see Article 725.

FPN No. 3: For further information for fire alarm systems, see Article 760.

FPN No. 4: For installation requirements of optical fiber cables and raceways, see Article 770.

FPN No. 5: For installation requirements for network-powered broadband communications circuits, see Article 830.

800.2 Definitions. See Article 100. For the purposes of this article, the following additional definitions apply.

Abandoned Communications Cable. Installed communications cable that is not terminated at both ends at a connector or other equipment and not identified for future use with a tag.

FPN: See Article 100 for a definition of Equipment.

Air Duct. A conduit or passageway for conveying air to or from heating, cooling, air conditioning, or ventilating equipment, but not including the plenum. [90A:3.3.5]

Block. A square or portion of a city, town, or village enclosed by streets and including the alleys so enclosed, but not any street.

Cable. A factory assembly of two or more conductors having an overall covering.

Cable Sheath. A covering over the conductor assembly that may include one or more metallic members, strength members, or jackets.

Communications Circuit. The circuit that extends voice, audio, video, data, interactive services, telegraph (except radio), outside wiring for fire alarm and burglar alarm from the communications utility to the customer’s communications equipment up to and including terminal equipment such as a telephone, fax machine, or answering machine.

Communications Circuit Integrity (CI) Cable. Cable used in communications systems to ensure continued operation of critical circuits during a specified time under fire conditions.

Exposed (to Accidental Contact). A circuit that is in such a position that, in case of failure of supports or insulation, contact with another circuit may result.

FPN: See Article 100 for two other definitions of Exposed.

Point of Entrance. The point within a building at which the wire or cable emerges from an external wall, from a concrete floor slab, or from a rigid metal conduit (Type RMC) or an intermediate metal conduit (Type IMC) connected by a grounding conductor to an electrode in accordance with 800.100(B).

Premises. The land and buildings of a user located on the user side of the utility-user network point of demarcation.

Wire. A factory assembly of one or more insulated conductors without an overall covering.

800.3 Other Articles.

(A) Hazardous (Classified) Locations. Communications circuits and equipment installed in a location that is classified in accordance with 500.5 and 505.5 shall comply with the applicable requirements of Chapter 5.

(B) Equipment in Other Space Used for Environmental Air. Section 300.22(C) shall apply.

(C) Network-Powered Broadband Communications Systems. Article 830 shall apply to network-powered broadband communications systems.

800.18 Installation of Equipment. Equipment electrically connected to a telecommunications network shall be listed in accordance with 800.170. Installation of equipment shall also comply with 110.3(B).

Exception: This listing requirement shall not apply to test equipment that is intended for temporary connection to a telecommunications network by qualified persons during the course of installation, maintenance, or repair of telecommunications equipment or systems.

800.21 Access to Electrical Equipment Behind Panels Designed to Allow Access. Access to electrical equipment
shall not be denied by an accumulation of communications wires and cables that prevents removal of panels, including suspended ceiling panels.

800.24 Mechanical Execution of Work. Communications circuits and equipment shall be installed in a neat and workmanlike manner. Cables installed exposed on the surface of ceilings and sidewalls shall be supported by the building structure in such a manner that the cable will not be damaged by normal building use. Such cables shall be secured by hardware, including straps, staples, cable ties, hangers, or similar fittings designed and installed so as not to damage the cable. The installation shall also conform to 300.4(D) and 300.11.

800.25 Abandoned Cables. The accessible portion of abandoned communications cables shall be removed. Where cables are identified for future use with a tag, the tag shall be of sufficient durability to withstand the environment involved.

800.26 Spread of Fire or Products of Combustion. Installations of communications cables and communications raceways in hollow spaces, vertical shafts, and ventilation or air-handling ducts shall be made so that the possible spread of fire or products of combustion will not be substantially increased. Openings around penetrations of communications cables and communications raceways through fire-resistant-rated walls, partitions, floors, or ceilings shall be firestopped using approved methods to maintain the fire resistance rating.

FPN: Directories of electrical construction materials published by qualified testing laboratories contain many listing installation restrictions necessary to maintain the fire-resistant rating of assemblies where penetrations or openings are made. Building codes also contain restrictions on membrane penetrations on opposite sides of a fire resistance-rated wall assembly. An example is the 600 mm (24 in.) minimum horizontal separation that usually applies between boxes installed on opposite sides of the wall. Assistance in complying with 800.26 can be found in building codes, fire resistance directories, and product listings.

II. Wires and Cables Outside and Entering Buildings

800.44 Overhead Communications Wires and Cables. Overhead communications wires and cables entering buildings shall comply with 800.44(A) and (B).

(A) On Poles and In-Span. Where communications wires and cables and electric light or power conductors are supported by the same pole or are run parallel to each other in-span, the conditions described in 800.44(A)(1) through (A)(4) shall be met.

(1) Relative Location. Where practicable, the communications wires and cables shall be located below the electric light or power conductors.

(2) Attachment to Cross-Arms. Communications wires and cables shall not be attached to a cross-arm that carries electric light or power conductors.

(3) Climbing Space. The climbing space through communications wires and cables shall comply with the requirements of 225.14(D).

(4) Clearance. Supply service drops of 0–750 volts running above and parallel to communications service drops shall have a minimum separation of 300 mm (12 in.) at any point in the span, including the point of and at their attachment to the building, provided the nongrounded conductors are insulated and that a clearance of not less than 1.0 m (40 in.) is maintained between the two services at the pole.

(B) Above Roofs. Communications wires and cables shall have a vertical clearance of not less than 2.5 m (8 ft) from all points of roofs above which they pass.

Exception No. 1: Auxiliary buildings, such as garages and the like.

Exception No. 2: A reduction in clearance above only the overhanging portion of the roof to not less than 450 mm (18 in.) shall be permitted if (a) not more than 1.2 m (4 ft) of communications service-drop conductors pass above the roof overhang and (b) they are terminated at a through- or above-the-roof raceway or approved support.

Exception No. 3: Where the roof has a slope of not less than 100 mm in 300 mm (4 in. in 12 in.), a reduction in clearance to not less than 900 mm (3 ft) shall be permitted.

FPN: For additional information regarding overhead wires and cables, see ANSI C2-2007, National Electric Safety Code, Part 2, Safety Rules for Overhead Lines.

800.47 Underground Circuits Entering Buildings. Underground communications wires and cables entering buildings shall comply with 800.47(A) and (B).

(A) With Electric Light or Power Conductors. Underground communications wires and cables in a raceway, handhole enclosure, or manhole containing electric light, power, Class 1, or non–power-limited fire alarm circuit conductors shall be in a section separated from such conductors by means of brick, concrete, or tile partitions or by means of a suitable barrier.
(B) Underground Block Distribution. Where the entire street circuit is run underground and the circuit within the block is placed so as to be free from the likelihood of accidental contact with electric light or power circuits of over 300 volts to ground, the insulation requirements of 800.50(A) and (C) shall not apply, insulating supports shall not be required for the conductors, and bushings shall not be required where the conductors enter the building.

800.48 Unlisted Cables Entering Buildings. Unlisted outside plant communications cables shall be permitted to be installed in locations as described in 800.154(C) where the length of the cable within the building, measured from its point of entrance, does not exceed 15 m (50 ft) and the cable enters the building from the outside and is terminated in an enclosure or on a listed primary protector.

FPN No. 1: Splice cases or terminal boxes, both metallic and plastic types, are typically used as enclosures for splicing or terminating telephone cables.

FPN No. 2: This section limits the length of unlisted outside plant cable to 15 m (50 ft), while 800.90(B) requires that the primary protector be located as close as practicable to the point at which the cable enters the building. Therefore, in installations requiring a primary protector, the outside plant cable may not be permitted to extend 15 m (50 ft) into the building if it is practicable to place the primary protector closer than 15 m (50 ft) to the entrance point.

FPN No. 3: See 800.2 for the definition of Point of Entrance.

800.50 Circuits Requiring Primary Protectors. Circuits that require primary protectors as provided in 800.90 shall comply with 800.50(A), (B), and (C).

(A) Insulation, Wires, and Cables. Communications wires and cables without a metallic shield, running from the last outdoor support to the primary protector, shall be listed in accordance with 800.173.

(B) On Buildings. Communications wires and cables in accordance with 800.50(A) shall be separated at least 100 mm (4 in.) from electric light or power conductors not in a raceway or cable or be permanently separated from conductors of the other system by a continuous and firmly fixed nonconductor in addition to the insulation on the wires, such as porcelain tubes or flexible tubing. Communications wires and cables in accordance with 800.50(A) exposed to accidental contact with electric light and power conductors operating at over 300 volts to ground and attached to buildings shall be separated from woodwork by being supported on glass, porcelain, or other insulating material.

Exception: Separation from woodwork shall not be required where fuses are omitted as provided for in 800.90(A)(1), or where conductors are used to extend circuits to a building from a cable having a grounded metal sheath.

(C) Entering Buildings. Where a primary protector is installed inside the building, the communications wires and cables shall enter the building either through a noncombustible, nonabsorbent insulating bushing or through a metal raceway. The insulating bushing shall not be required where the entering communications wires and cables (1) are in metal-sheathed cable, (2) pass through masonry, (3) meet the requirements of 800.50(A) and fuses are omitted as provided in 800.90(A)(1), or (4) meet the requirements of 800.50(A) and are used to extend circuits to a building from a cable having a grounded metallic sheath. Raceways or bushings shall slope upward from the outside or, where this cannot be done, drip loops shall be formed in the communications wires and cables immediately before they enter the building.

Raceways shall be equipped with an approved service head. More than one communications wire and cable shall be permitted to enter through a single raceway or bushing. Conduits or other metal raceways located ahead of the primary protector shall be grounded.

800.53 Lightning Conductors. Where practicable, a separation of at least 1.8 m (6 ft) shall be maintained between communications wires and cables on buildings and lighting conductors.

III. Protection

800.90 Protective Devices.

(A) Application. A listed primary protector shall be provided on each circuit run partly or entirely in aerial wire or aerial cable not confined within a block. Also, a listed primary protector shall be provided on each circuit, aerial or underground, located within the block containing the building served so as to be exposed to accidental contact with electric light or power conductors operating at over 300 volts to ground. In addition, where there exists a lightning exposure, each interbuilding circuit on a premises shall be protected by a listed primary protector at each end of the interbuilding circuit. Installation of primary protectors shall also comply with 110.3(B).

FPN No. 1: On a circuit not exposed to accidental contact with power conductors, providing a listed primary protector in accordance with this article helps protect against other hazards, such as lightning and above-normal voltages induced by fault currents on power circuits in proximity to the communications circuit.

FPN No. 2: Interbuilding circuits are considered to have a lightning exposure unless one or more of the following conditions exist:

(1) Circuits in large metropolitan areas where buildings are close together and sufficiently high to intercept lightning.
(2) Interbuilding cable runs of 42 m (140 ft) or less, directly buried or in underground conduit, where a continuous metallic cable shield or a continuous metallic conduit containing the cable is connected to each building grounding electrode system.

(3) Areas having an average of five or fewer thunderstorm days per year and earth resistivity of less than 100 ohm-meters. Such areas are found along the Pacific coast.

(1) Fuseless Primary Protectors. Fuseless-type primary protectors shall be permitted under any of the conditions given in (A)(1)(a) through (A)(1)(e).

(a) Where conductors enter a building through a cable with grounded metallic sheath member(s) and where the conductors in the cable safely fuse on all currents greater than the current-carrying capacity of the primary protector and of the primary protector grounding conductor

(b) Where insulated conductors in accordance with 800.50(A) are used to extend circuits to a building from a cable with an effectively grounded metallic sheath member(s) and where the conductors in the cable or cable stub, or the connections between the insulated conductors and the plant exposed to accidental contact with electric light or power conductors operating at greater than 300 volts to ground, safely fuse on all currents greater than the current-carrying capacity of the primary protector, or the associated insulated conductors and of the primary protector grounding conductor

(c) Where insulated conductors in accordance with 800.50(A) or (B) are used to extend circuits to a building from other than a cable with metallic sheath member(s), where (1) the primary protector is listed as being suitable for this purpose for application with circuits extending from other than a cable with metallic sheath members, and (2) the connections of the insulated conductors to the plant exposed to accidental contact with electric light or power conductors operating at greater than 300 volts to ground or the conductors of the plant exposed to accidental contact with electric light or power conductors operating at greater than 300 volts to ground safely fuse on all currents greater than the current-carrying capacity of the primary protector, or associated insulated conductors and of the primary protector grounding conductor

(d) Where insulated conductors in accordance with 800.50(A) are used to extend circuits aerially to a building from a buried or underground circuit that is not exposed to accidental contact with electric light or power conductors operating at greater than 300 volts to ground

(e) Where insulated conductors in accordance with 800.50(A) are used to extend circuits to a building from cable with an effectively grounded metallic sheath member(s), and where (1) the combination of the primary protector and insulated conductors is listed as being suitable for this purpose for application with circuits extending from a cable with an effectively grounded metallic sheath member(s), and (2) the insulated conductors safely fuse on all currents greater than the current-carrying capacity of the primary protector and of the primary protector grounding conductor

FPN: Section 9 of ANSI C2-2007, National Electrical Safety Code, provides an example of methods of protective grounding that can achieve effective grounding of telecommunications cable sheaths for cables from which communications circuits are extended.

(2) Fused Primary Protectors. Where the requirements listed under 800.90(A)(1)(a) through (A)(1)(e) are not met, fused-type primary protectors shall be used. Fused-type primary protectors shall consist of an arrester connected between each line conductor and ground, a fuse in series with each line conductor, and an appropriate mounting arrangement. Primary protector terminals shall be marked to indicate line, instrument, and ground, as applicable.

(B) Location. The primary protector shall be located in, on, or immediately adjacent to the structure or building served and as close as practicable to the point of entrance.

FPN: See 800.2 for the definition of Point of Entrance.

For purposes of this section, primary protectors located at mobile home service equipment located within 9.0 m (30 ft) of the exterior wall of the mobile home it serves, or at a mobile home disconnecting means connected to an electrode by a grounding conductor in accordance with 250.32 and located within 9.0 m (30 ft) of the exterior wall of the mobile home it serves, shall be considered to meet the requirements of this section.

FPN: Selecting a primary protector location to achieve the shortest practicable primary protector grounding conductor helps limit potential differences between communications circuits and other metallic systems.

(C) Hazardous (Classified) Locations. The primary protector shall not be located in any hazardous (classified) location as defined in 500.5 or in the vicinity of easily ignitable material.

Exception: As permitted in 501.150, 502.150, and 503.150.

(D) Secondary Protectors. Where a secondary protector is installed in series with the indoor communications wire and cable between the primary protector and the equipment, it shall be listed for the purpose in accordance with 800.170(B).

FPN: Secondary protectors on circuits exposed to accidental contact with electric light or power conductors operating at greater than 300 volts to ground are not intended for use without primary protectors.

800.93 Grounding or Interruption of Metallic Sheath Members of Communications Cables. Communications cables entering the building or terminating on the outside of the building shall comply with 800.93(A) or (B).
(A) **Entering Buildings.** In installations where the communications cable enters a building, the metallic sheath members of the cable shall be either grounded as specified in 800.100 or interrupted by an insulating joint or equivalent device. The grounding or interruption shall be as close as practicable to the point of entrance.

(B) **Terminating on the Outside of Buildings.** In installations where the communications cable is terminated on the outside of the building, the metallic sheath members of the cable shall be either grounded as specified in 800.100 or interrupted by an insulating joint or equivalent device. The grounding or interruption shall be as close as practicable to the point of termination of the cable.

FPN: See 800.2 for a definition of Point of Entrance.

IV. Grounding Methods

800.100 Cable and Primary Protector Grounding. The primary protector and the metallic member(s) of the cable sheath shall be grounded as specified in 800.100(A) through (D).

(A) **Grounding Conductor.**

1. **Insulation.** The grounding conductor shall be insulated and shall be listed.

2. **Material.** The grounding conductor shall be copper or other corrosion-resistant conductive material, stranded or solid.

3. **Size.** The grounding conductor shall not be smaller than 14 AWG.

4. **Length.** The primary protector grounding conductor shall be as short as practicable. In one- and two-family dwellings, the primary protector grounding conductor shall be as short as practicable, not to exceed 6.0 m (20 ft) in length.

 FPN: Similar grounding conductor length limitations applied at apartment buildings and commercial buildings help to reduce voltages that may be developed between the building's power and communications systems during lightning events.

 Exception: In one- and two-family dwellings where it is not practicable to achieve an overall maximum primary protector grounding conductor length of 6.0 m (20 ft), a separate communications ground rod meeting the minimum dimensional criteria of 800.100(B)(2)(2) shall be driven, the primary protector shall be connected to the communications ground rod in accordance with 800.100(C), and the communications ground rod shall be connected to the power grounding electrode system in accordance with 800.100(D).

5. **Run in Straight Line.** The grounding conductor shall be run to the grounding electrode in as straight a line as practicable.

6. **Physical Protection.** The grounding conductor shall be protected where exposed to physical damage. Where the grounding conductor is run in a metal raceway, both ends of the raceway shall be bonded to the grounding conductor or the same terminal or electrode to which the grounding conductor is connected.

(B) **Electrode.** The grounding conductor shall be connected in accordance with 800.100(B)(1), (B)(2), or (B)(3).

1. **In Buildings or Structures with an Intersystem Bonding Termination.** If the building or structure served has an intersystem bonding termination, the grounding conductor shall be connected to the intersystem bonding termination.

2. **In Buildings or Structures with Grounding Means.** If the building or structure served has no intersystem bonding termination, the grounding conductor shall be connected to the nearest accessible location on the following:

 1. The building or structure grounding electrode system as covered in 250.50

 2. The grounded interior metal water piping system, within 1.5 m (5 ft) from its point of entrance to the building, as covered in 250.52

 3. The power service accessible means external to enclosures as covered in 250.94

 4. The metallic power service raceway

 5. The service equipment enclosure

 6. The grounding electrode conductor or the grounding electrode conductor metal enclosure

 7. The grounding conductor or the grounding electrode of a building or structure disconnecting means that is grounded to an electrode as covered in 250.32

 A bonding device intended to provide a termination point for the grounding conductor (intersystem bonding) shall not interfere with the opening of an equipment enclosure. A bonding device shall be mounted on non-removable parts. A bonding device shall not be mounted on a door or cover even if the door or cover is nonremovable.

 For purposes of this section, the mobile home service equipment or the mobile home disconnecting means, as described in 800.90(B), shall be considered accessible.

3. **In Buildings or Structures Without Intersystem Bonding Termination or Grounding Means.** If the building or structure served has no intersystem bonding termination or grounding means, as described in 800.100(B)(2), the grounding conductor shall be connected to either of the following:

 1. To any one of the individual electrodes described in 250.52(A)(1), (A)(2), (A)(3), or (A)(4)
(2) If the building or structure served has no inter-system bonding termination or has no grounding means, as described in 800.100(B)(2) or (B)(3)(1), to any one of the individual electrodes described in 250.52(A)(7), and (A)(8) or to a ground rod or pipe not less than 1.5 m (5 ft) in length and 12.7 mm (1/2 in.) in diameter, driven, where practicable, into permanently damp earth and separated from lightning conductors as covered in 800.53 and at least 1.8 m (6 ft) from electrodes of other systems. Steam or hot water pipes or air terminal conductors (lightning-rod conductors) shall not be employed as electrodes for protectors.

(C) Electrode Connection. Connections to grounding electrodes shall comply with 250.70.

(D) Bonding of Electrodes. A bonding jumper not smaller than 6 AWG copper or equivalent shall be connected between the communications grounding electrode and power grounding electrode system at the building or structure served where separate electrodes are used.

Exception: At mobile homes as covered in 800.106.

FPN No. 1: See 250.60 for use of air terminals (lightning rods).

FPN No. 2: Bonding together of all separate electrodes limits potential differences between them and between their associated wiring systems.

800.106 Primary Protector Grounding and Bonding at Mobile Homes.

(A) Grounding. Grounding shall comply with 800.106(A)(1) and (A)(2).

(1) Where there is no mobile home service equipment located within 9.0 m (30 ft) of the exterior wall of the mobile home it serves, the primary protector ground shall be connected to a grounding conductor in accordance with 800.100(B)(2).

(2) Where there is no mobile home disconnecting means grounded in accordance with 250.32 and located within 9.0 m (30 ft) of the exterior wall of the mobile home it serves, the primary protector ground shall be connected to a grounding conductor in accordance with 800.100(B)(2).

(B) Bonding. The primary protector grounding terminal or grounding electrode shall be connected to the metal frame or available grounding terminal of the mobile home with a copper grounding conductor not smaller than 12 AWG under either of the following conditions:

(1) Where there is no mobile home service equipment or disconnecting means as in 800.106(A)

(2) Where the mobile home is supplied by cord and plug

V. Installation Methods Within Buildings

800.110 Raceways for Communications Wires and Cables. Where communications wires and cables are installed in a raceway, the raceway shall be either of a type permitted in Chapter 3 and installed in accordance with Chapter 3 or listed plenum communications raceway, listed riser communications raceway, or listed general-purpose communications raceway installed in accordance with 800.154 and installed in accordance with 362.24 through 362.56, where the requirements applicable to electrical nonmetallic tubing apply. The raceway fill tables of Chapter 3 and Chapter 9 shall not apply.

800.113 Installation of Communications Wires and Cables. Communications cables installed in buildings shall be listed.

Exception: Communications cables that comply with 800.48 shall not be required to be listed.

800.133 Installation of Communications Wires, Cables, and Equipment. Communications wires and cables from the protector to the equipment or, where no protector is required, communications wires and cables attached to the outside or inside of the building shall comply with 800.133(A) through (C).

(A) Separation from Other Conductors.

(1) In Raceways, Cable Trays, Boxes, and Cables.

(a) Other Power-Limited Circuits. Communications cables shall be permitted in the same raceway, cable tray, or enclosure with cables of any of the following:

(1) Class 2 and Class 3 remote-control, signaling, and power-limited circuits in compliance with Article 725

(2) Power-limited fire alarm systems in compliance with Article 760

(3) Nonconductive and conductive optical fiber cables in compliance with Article 770

(4) Community antenna television and radio distribution systems in compliance with Article 820

(5) Low-power network-powered broadband communications circuits in compliance with Article 830

(b) Class 2 and Class 3 Circuits. Class 2 circuits shall not be run in the same cable with communications circuits. Class 2 and Class 3 circuit conductors shall be permitted in the same cable with communications circuits, in which case the Class 2 and Class 3 circuits shall be classified as communications circuits and shall meet the requirements of this article. The cables shall be listed as communications cables.

Exception: Cables constructed of individually listed Class 2, Class 3, and communications cables under a common jacket shall not be required to be classified as
communications cable. The fire-resistance rating of the composite cable shall be determined by the performance of the composite cable.

(c) Electric Light, Power, Class 1, Non–Power-Limited Fire Alarm, and Medium-Power Network-Powered Broadband Communications Circuits in Raceways, Compartments, and Boxes. Communications conductors shall not be placed in any raceway, compartment, outlet box, junction box, or similar fitting with conductors of electric light, power, Class 1, non–power-limited fire alarm, or medium-power network-powered broadband communications circuits.

Exception No. 1: Where all of the conductors of electric light, power, Class 1, non–power-limited fire alarm, and medium-power network-powered broadband communications circuits are separated from all of the conductors of communications circuits by a permanent barrier or listed divider.

Exception No. 2: Power conductors in outlet boxes, junction boxes, or similar fittings or compartments where such conductors are introduced solely for power supply to communications equipment. The power circuit conductors shall be routed within the enclosure to maintain a minimum of 6 mm (0.25 in.) separation from the communications circuit conductors.

Exception No. 3: As permitted by 620.36.

(2) Other Applications. Communications wires and cables shall be separated at least 50 mm (2 in.) from conductors of any electric light, power, Class 1, non–power-limited fire alarm, or medium-power network-powered broadband communications circuits.

Exception No. 1: Where either (1) all of the conductors of the electric light, power, Class 1, non–power-limited fire alarm, and medium-power network-powered broadband communications circuits are in a raceway or in metal-sheathed, metal-clad, nonmetallic-sheathed, Type AC, or Type UF cables, or (2) all of the conductors of communications circuits are encased in raceway.

Exception No. 2: Where the communications wires and cables are permanently separated from the conductors of electric light, power, Class 1, non–power-limited fire alarm, and medium-power network-powered broadband communications circuits by a continuous and firmly fixed nonconductor, such as porcelain tubes or flexible tubing, in addition to the insulation on the wire.

(B) Support of Conductors. Raceways shall be used for their intended purpose. Communications cables or wires shall not be strapped, taped, or attached by any means to the exterior of any conduit or raceway as a means of support.

Exception: Overhead (aerial) spans of communications cables or wires shall be permitted to be attached to the exterior of a raceway-type mast intended for the attachment and support of such conductors.

(C) Wiring in Ducts for Dust, Loose Stock, or Vapor Removal. Section 300.22(A) shall apply.

800.154 Applications of Listed Communications Wires and Cables and Communications Raceways. Communications wires and cables shall comply with the requirements of 800.154(A) through (D), 800.154(F), and 800.154(G), or where cable substitutions are made in accordance with 800.154(E).

(A) Plenum. Cables installed in ducts, plenums, and other spaces used for environmental air shall be Type CMP. Abandoned cables shall not be permitted to remain. Types CMP, CMR, CMG, CM, and CMX and communications wire installed in compliance with 300.22 shall be permitted. Listed plenum communications raceways shall be permitted to be installed in ducts and plenums as described in 300.22(B) and in other spaces used for environmental air as described in 300.22(C). Only Type CMP cable shall be permitted to be installed in raceways.

(B) Riser. Cables installed in risers shall comply with 800.154(B)(1), (B)(2), or (B)(3).

(1) Cables in Vertical Runs. Cables installed in vertical runs and penetrating more than one floor, or cables installed in vertical runs in a shaft, shall be Type CMR. Floor penetrations requiring Type CMR shall contain only cables suitable for riser or plenum use. Listed riser communications raceways and listed plenum communications raceways shall be permitted to be installed in vertical riser runs in a shaft from floor to floor. Only Type CMR and CMP cables shall be permitted to be installed in these raceways.

(2) Metal Raceways or Fireproof Shafts. Listed communications cables shall be encased in a metal raceway or located in a fireproof shaft having firestops at each floor.

(3) One- and Two-Family Dwellings. Type CM and CMX cable shall be permitted in one- and two-family dwellings. FPN: See 800.26 for firestop requirements for floor penetrations.

(C) Other Wiring Within Buildings. Cables installed in building locations other than the locations covered in 800.154(A), (B), (D), and (G) shall be in accordance with 800.154(C)(1) through (C)(6).

(1) General. Cables shall be Type CMG or Type CM. Listed communications general-purpose raceways, listed riser communications raceways, and listed plenum communications raceways shall be permitted. Only Types CMG, CM, CMR, or CMP cables shall be permitted to be installed in these communications raceways.
(2) In Raceways. Listed communications wires that are enclosed in a raceway of a type included in Chapter 3 shall be permitted.

(3) Nonconcealed Spaces. Type CMX communications cable shall be permitted to be installed in nonconcealed spaces where the exposed length of cable does not exceed 3 m (10 ft).

(4) One- and Two-Family Dwellings. Type CMX communications cable less than 6 mm (0.25 in.) in diameter shall be permitted to be installed in one- and two-family dwellings.

(5) Multifamily Dwellings. Type CMX communications cable less than 6 mm (0.25 in.) in diameter shall be permitted to be installed in nonconcealed spaces in multifamily dwellings.

(6) Under Carpets. Type CMUC undercarpet communications wires and cables shall be permitted to be installed under carpet.

(D) Cable Trays. Types CMP, CMR, CMG, and CM communications cables shall be permitted to be installed in cable trays. Communications raceways, as described in 800.182, shall be permitted to be installed in cable trays.

(E) Cable Substitutions. The uses and substitutions for communications cables listed in Table 800.154(E) and illustrated in Figure 800.154(E) shall be permitted.

FPN: For information on Types CMP, CMR, CMG, CM, and CMX cables, see 800.179.

(F) Hybrid Power and Communications Cable. Hybrid power and communications cable listed in accordance with 800.179(H) shall be permitted to be installed in one- and two-family dwellings.

(G) Distributing Frames and Cross-Connect Arrays. Listed communications wire and Types CMP, CMR, CMG, and CM communications cables shall be used in distributing frames and cross-connect arrays.

800.156 Dwelling Unit Communications Outlet. For new construction, a minimum of one communications outlet shall be installed within the dwelling and cabled to the service provider demarcation point.

VI. Listing Requirements

800.170 Equipment. Communications equipment shall be listed as being suitable for electrical connection to a telecommunications network.

FPN: One way to determine applicable requirements is to refer to UL 60950-1-2003, Standard for Safety of Information Technology Equipment; UL 1459-1995, Standard for Safety, Telephone Equipment; or UL 1863-2004, Standard...
800.173 Drop Wire and Cable. Communications wires and cables without a metallic shield, running from the last outdoor support to the primary protector, shall be listed as being suitable for the purpose and shall have current-carrying capacity as specified in 800.90(A)(1)(b) or (A)(1)(c).

800.179 Communications Wires and Cables. Communications wires and cables shall be listed in accordance with 800.179(A) through (I) and marked in accordance with Table 800.179. Conductors in communications cables, other than in a coaxial cable, shall be copper.

Communications wires and cables shall have a voltage rating of not less than 300 volts. The insulation for the individual conductors, other than the outer conductor of a coaxial cable, shall be rated for 300 volts minimum. The cable voltage rating shall not be marked on the cable or on the undercarpet communications wire. Communications wires and cables shall have a temperature rating of not less than 60°C.

Exception: Voltage markings shall be permitted where the cable has multiple listings and voltage marking is required for one or more of the listings.

FPN No. 1: Voltage markings on cables may be misinterpreted to suggest that the cables may be suitable for Class 1, electric light, and power applications.

FPN No. 2: See 800.170 for listing requirement for equipment.

Table 800.179 Cable Markings

<table>
<thead>
<tr>
<th>Cable Marking</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP</td>
<td>Communications plenum cable</td>
<td>800.179(A) and 800.154(A)</td>
</tr>
<tr>
<td>CMR</td>
<td>Communications riser cable</td>
<td>800.179(B) and 800.154(B)</td>
</tr>
<tr>
<td>CMG</td>
<td>Communications general-purpose cable</td>
<td>800.179(C) and 800.154(D)</td>
</tr>
<tr>
<td>CM</td>
<td>Communications general-purpose cable</td>
<td>800.179(D) and 800.154(D) (E)(1)</td>
</tr>
<tr>
<td>CMX</td>
<td>Communications cable, limited use</td>
<td>800.179(E) and 800.154(E)(2), (3), (4), and (5)</td>
</tr>
<tr>
<td>CMUC</td>
<td>Undercarpet communications wire and cable</td>
<td>800.179(F) and 800.154(E)(6)</td>
</tr>
</tbody>
</table>

FPN No. 1: Cable types are listed in descending order of fire resistance rating.

FPN No. 2: See the referenced sections for permitted uses.

(A) Type CMP. Type CMP communications plenum cable shall be listed as being suitable for use in ducts, plenums, and other spaces used for environmental air and shall also be listed as having adequate fire-resistant and low smoke-producing characteristics.

FPN: One method of defining a cable that is low smoke-producing cable and fire-resistant cable is that the cable exhibits a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.52 m (5 ft) or less when tested in accordance with NFPA 262-2007, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

(B) Type CMR. Type CMR communications riser cables shall be listed as being suitable for use in a vertical run in a shaft or from floor to floor and shall also be listed as having fire-resistant characteristics capable of preventing the carrying of fire from floor to floor.

FPN: One method of defining fire-resistant characteristics capable of preventing the carrying of fire from floor to floor is that the cables pass the requirements of ANSI/UL 1666-2002, Standard Test for Flame Propagation Height of Electrical and Optical-Fiber Cable Installed Vertically in Shafts.

(C) Type CMG. Type CMG general-purpose communications cables shall be listed as being suitable for general-purpose communications use, with the exception of risers and plenums, and shall also be listed as being resistant to the spread of fire.

FPN: One method of defining resistant to the spread of fire is for the damage (char length) not to exceed 1.5 m (4 ft 11 in.) when performing the CSA “Vertical Flame Test — Cables in Cable Trays,” as described in CSA C22.2 No. 0.3-M-2001, Test Methods for Electrical Wires and Cables.

(D) Type CM. Type CM communications cables shall be listed as being suitable for general-purpose communications use, with the exception of risers and plenums, and shall also be listed as being resistant to the spread of fire.

FPN: One method of defining resistant to the spread of fire is that the cables do not spread fire to the top of the tray in the “UL Flame Exposure, Vertical Flame Tray Test” in UL 1685-2000, Standard for Safety for Vertical-Tray Fire-Propagation and Smoke-Release Test for Electrical and Optical-Fiber Cables. The smoke measurements in the test method are not applicable.

Another method of defining resistant to the spread of fire is for the damage (char length) not to exceed 1.5 m (4 ft 11 in.) when performing the CSA “Vertical Flame Test — Cables in Cable Trays,” as described in CSA C22.2 No. 0.3-M-2001, Test Methods for Electrical Wires and Cables.

(E) Type CMX. Type CMX limited-use communications cables shall be listed as being suitable for use in dwellings and for use in raceway and shall also be listed as being resistant to flame spread.

FPN: One method of determining that cable is resistant to flame spread is by testing the cable to the VW-1 (vertical-wire) flame test in ANSI/UL 1581-2001, Reference Standard for Electrical Wires, Cables, and Flexible Cords.
(F) Type CMUC Undercarpet Wires and Cables. Type CMUC undercarpet communications wires and cables shall be listed as being suitable for undercarpet use and shall also be listed as being resistant to flame spread.

FPN: One method of determining that cable is resistant to flame spread is by testing the cable to the VW-1 (vertical-wire) flame test in ANSI/UL 1581-1991, Reference Standard for Electrical Wires, Cables and Flexible Cords.

(G) Communications Circuit Integrity (CI) Cables. Cables suitable for use in communications systems to ensure survivability of critical circuits during a specified time under fire conditions shall be listed as circuit integrity (CI) cable. Cables identified in 800.179(A) through (E) that meet the requirements for circuit integrity shall have the additional classification using the suffix “CI.”

FPN: One method of defining circuit integrity (CI) cable is by establishing a minimum 2-hour fire resistance rating for the cable when tested in accordance with UL 2196-1995, Standard for Tests of Fire Resistant Cables.

(H) Communications Wires. Communications wires, such as distributing frame wire and jumper wire, shall be listed as being resistant to the spread of fire.

FPN: One method of defining resistant to the spread of fire is that the cables do not spread fire to the top of the tray in the "UL Flame Exposure, Vertical Flame Tray Test" in UL 1685-2000, Standard for Safety for Vertical-Tray Fire-Propagation and Smoke-Release Test for Electrical and Optical-Fiber Cables. The smoke measurements in the test method are not applicable.

Another method of defining resistant to the spread of fire is for the damage (char length) not to exceed 1.5 m (4 ft 11 in.) when performing the CSA “Vertical Flame Test — Cables in Cable Trays,” as described in CSA C22.2 No. 0.3-M-2001, Test Methods for Electrical Wires and Cables.

(I) Hybrid Power and Communications Cables. Listed hybrid power and communications cables shall be permitted where the power cable is a listed Type NM or NM-B conforming to the provisions of Article 334, and the communications cable is a listed Type CM, the jackets on the listed NM or NM-B and listed CM cables are rated for 600 volts minimum, and the hybrid cable is listed as being resistant to the spread of fire.

FPN: One method of defining resistant to the spread of fire is that the cables do not spread fire to the top of the tray in the “UL Flame Exposure, Vertical Flame Tray Test” in UL 1685-2000, Standard for Safety for Vertical-Tray Fire-Propagation and Smoke-Release Test for Electrical and Optical-Fiber Cables. The smoke measurements in the test method are not applicable.

Another method of defining resistant to the spread of fire is for the damage (char length) not to exceed 1.5 m (4 ft 11 in.) when performing the CSA “Vertical Flame Test — Cables in Cable Trays,” as described in CSA C22.2 No. 0.3-M-2001, Test Methods for Electrical Wires and Cables.

800.182 Communications Raceways. Communications raceways shall be listed in accordance with 800.182(A) through (C).

(A) Plenum Communications Raceways. Plenum communications raceways listed as plenum optical fiber raceways shall be permitted for use in ducts, plenums, and other spaces used for environmental air and shall also be listed as having adequate fire-resistant and low smoke-producing characteristics.

FPN: One method of defining that an optical fiber raceway is a low smoke producing raceway and a fire-resistant raceway is that the raceway exhibits a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.52 m (5 ft) or less when tested in accordance with the plenum test in UL 2024, Standard for Optical Fiber Cable Raceway.

(B) Riser Communications Raceways. Riser communications raceways shall be listed as having adequate fire-resistant characteristics capable of preventing the carrying of fire from floor to floor.

FPN: One method of defining fire-resistant characteristics capable of preventing the carrying of fire from floor to floor is that the raceways pass the requirements of the test for Flame Propagation (riser) in UL 2024, Standard for Optical Fiber Cable Raceway.

(C) General-Purpose Communications Raceways. General-purpose communications raceways shall be listed as being resistant to the spread of fire.

FPN: One method of defining resistance to the spread of fire is that the raceways pass the requirements of the Vertical-Tray Flame Test (General Use) in UL 2024, Standard for Optical Fiber Cable Raceway.

ARTICLE 810
Radio and Television Equipment

I. General

810.1 Scope. This article covers antenna systems for radio and television receiving equipment, amateur radio transmitting and receiving equipment, and certain features of transmitter safety. This article covers antennas such as multielement, vertical rod, and dish, and also covers the wiring and cabling that connects them to equipment. This article does not cover equipment and antennas used for coupling carrier current to power line conductors.

810.2 Definitions. For definitions applicable to this article, see Article 100.

810.3 Other Articles. Wiring from the source of power to and between devices connected to the interior wiring system shall comply with Chapters I through 4 other than as modified by Parts I and II of Article 640. Wiring for audio